Free Radical Damage: Difference between revisions

no edit summary
No edit summary
 
Line 1: Line 1:
What Exactly Is a Free Radical?
A free radical is an especially reactive atom or group of atoms that has one or more unpaired electrons. If you remember your high school chemistry, you will remember that electrons come in pairs. When one electron is lost from that pair, it makes the atom "highly reactive" as it looks to replace that lost electron anywhere it can. In your body, those replacement electrons come from cells in your body--destroying those cells in the process. Free radicals put your body in a state of oxidative stress in which your body is no longer able to maintain a balance between the appearance of reactive oxygen species and its ability to detoxify those free radicals or to repair the resulting damage. That's why free radicals function as cellular killers that wreak havoc by damaging DNA, altering biochemical compounds, corroding cell membranes, and destroying cells outright. <ref>[https://jonbarron.org/anti-aging/ultimate-antioxidant Antioxidant]</ref>
==Mitochondrial Damage==
Aside from impaired energy production, damage to the [[Mitochondria]] leads also to increased production of toxic molecules called free radicals. Compounds called antioxidants act as free radical scavengers by initiating reactions that make free radicals non-toxic to cells. Evidence indicates that damage by free radicals is a contributing factor to the pathology of neurological diseases. If free radicals overwhelm the body's ability to regulate them, a condition known as oxidative stress ensues. Free radicals thus adversely alter lipids, proteins, and DNA and trigger a number of human diseases.Free radicals attack important macromolecules leading to cell damage and homeostatic disruption. Targets of free radicals include all kinds of molecules in the body. Among them, lipids, nucleic acids, and proteins are the major targets. Hence application of external source of antioxidants can assist in coping this oxidative stress.
Aside from impaired energy production, damage to the [[Mitochondria]] leads also to increased production of toxic molecules called free radicals. Compounds called antioxidants act as free radical scavengers by initiating reactions that make free radicals non-toxic to cells. Evidence indicates that damage by free radicals is a contributing factor to the pathology of neurological diseases. If free radicals overwhelm the body's ability to regulate them, a condition known as oxidative stress ensues. Free radicals thus adversely alter lipids, proteins, and DNA and trigger a number of human diseases.Free radicals attack important macromolecules leading to cell damage and homeostatic disruption. Targets of free radicals include all kinds of molecules in the body. Among them, lipids, nucleic acids, and proteins are the major targets. Hence application of external source of antioxidants can assist in coping this oxidative stress.