Genome Editing

From Ascension Glossary

Genome Editing, or genome engineering is a type of Genetic Engineering in which DNA is inserted, deleted, modified or replaced in the genome of a living organism.

In 2018, the common methods for such editing use engineered nucleases, or "molecular scissors". These nucleases create site-specific double-strand breaks (DSBs) at desired locations in the genome. The induced double-strand breaks are repaired through nonhomologous end-joining (NHEJ) or homologous recombination (HR), resulting in targeted mutations ('edits').

As of 2015 four families of engineered nucleases were used: meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector-based nucleases (TALEN), and the clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system. Nine genome editors were available as of 2017.

Genome editing with engineered nucleases, ie all three major classes of these enzymes—zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and engineered meganucleases—were selected by Nature Methods as the 2011 Method of the Year. The CRISPR-Cas system was selected by Science as 2015 Breakthrough of the Year.

Transhumanist

Many transhumanists see Genome Editing as a potential tool for human enhancement. Australian biologist and Professor of Genetics David Andrew Sinclair notes that "the new technologies with genome editing will allow it to be used on individuals to have healthier children" – designer babies. According to a September 2016 report by the Nuffield Council on Bioethics in the future it may be possible to enhance people with genes from other organisms or wholly synthetic genes to for example improve night vision and sense of smell. [1]

Risks

In the 2016 Worldwide Threat Assessment of the US Intelligence Community statement United States Director of National Intelligence, James R. Clapper, named genome editing as a potential weapon of mass destruction, stating that genome editing conducted by countries with regulatory or ethical standards "different from Western countries" probably increases the risk of the creation of harmful biological agents or products. According to the statement the broad distribution, low cost, and accelerated pace of development of this technology, its deliberate or unintentional misuse might lead to far-reaching economic and national security implications. For instance technologies such as CRISPR could be used to make "killer mosquitoes" that cause plagues that wipe out staple crops.

According to a September 2016 report by the Nuffield Council on Bioethics, the simplicity and low cost of tools to edit the genetic code will allow amateurs or "biohackers" to perform their own experiments, posing a potential risk from the release of genetically modified bugs. The review also found that the risks and benefits of modifying a person's genome – and having those changes pass on to future generations – are so complex that they demand urgent ethical scrutiny. Such modifications might have unintended consequences which could harm not only the child, but also their future children, as the altered gene would be in their sperm or eggs. In 2001 Australian researchers Ronald Jackson and Ian Ramshaw were criticized for publishing a paper in the Journal of Virology that explored the potential control of mice, a major pest in Australia, by infecting them with an altered mousepox virus that would cause infertility as the provided sensitive information could lead to the manufacture of biological weapons by potential bioterrorists who might use the knowledge to create vaccine resistant strains of other pox viruses, such as smallpox, that could affect humans. Furthermore, there are additional concerns about the ecological risks of releasing gene drives into wild populations.[2]



References

See Also

Molecular Information Transfer

Mind Controlled Gene Expression

Eugenics

Genetic Engineering