Messier 31: Difference between revisions
Line 12: | Line 12: | ||
==Formation and history== | ==Formation and history== | ||
[[File:330px-WISE- Andromeda.jpg|thumb|The Andromeda Galaxy as seen by NASA's Wide-field Infrared Survey Explorer]] | [[File:330px-WISE- Andromeda.jpg|thumb|The Andromeda Galaxy as seen by NASA's Wide-field Infrared Survey Explorer]] | ||
According to a team of astronomers reporting in 2010, M31 was formed out of the collision of two smaller galaxies between 5 and 9 billion years ago. | According to a team of astronomers reporting in 2010, M31 was formed out of the collision of two smaller galaxies between 5 and 9 billion years ago. A paper published in 2012 has outlined M31's basic history since its birth. According to it, Andromeda was born roughly 10 billion years ago from the merger of many smaller protogalaxies, leading to a galaxy smaller than the one we see today. | ||
A paper published in 2012 has outlined M31's basic history since its birth. According to it, Andromeda was born roughly 10 billion years ago from the merger of many smaller protogalaxies, leading to a galaxy smaller than the one we see today. | |||
The most important event in M31's past history was the merger mentioned above that took place 8 billion years ago. This violent collision formed most of its (metal-rich) galactic halo and extended disk and during that epoch Andromeda's star | |||
While there has been activity during the last 2 billion years, this has been much lower than during the past. During this epoch, star formation throughout M31's disk decreased to the point of nearly shutting down, then increased again relatively recently. There have been interactions with satellite galaxies like | The most important event in M31's past history was the merger mentioned above that took place 8 billion years ago. This violent collision formed most of its (metal-rich) galactic halo and extended disk and during that epoch Andromeda's star formation would have been very high, to the point of becoming a luminous infrared galaxy for roughly 100 million years. [[Messier 31]] and the [[Triangulum]] Galaxy ([[Messier 33]]) had a very close passage 2–4 billion years ago. This event produced high levels of star formation across the Andromeda Galaxy's disk – even some globular clusters – and disturbed M33's outer disk. | ||
While there has been activity during the last 2 billion years, this has been much lower than during the past. During this epoch, star formation throughout M31's disk decreased to the point of nearly shutting down, then increased again relatively recently. There have been interactions with satellite galaxies like [[Messier 32]], [[Messier 110]], or others that have already been absorbed by M31. These interactions have formed structures like Andromeda's Giant Stellar Stream. A merger roughly 100 million years ago is believed to be responsible for a counter-rotating disk of gas found in the center of M31 as well as the presence there of a relatively young (100 million years old) stellar population. | |||
==References== | ==References== |
Revision as of 21:25, 23 March 2015
Andromeda Galaxy is a spiral galaxy approximately 780 kiloparsecs (2.5 million light-years; 2.4×1019 km) from Earth.Also known as Messier 31, M31, or NGC 224, it is often referred to as the Great Andromeda Nebula in older texts. The Andromeda Galaxy is the nearest major galaxy to the Milky Way, but not the nearest galaxy overall. It gets its name from the area of the sky in which it appears, the constellation of Andromeda, which was named after the mythological princess Andromeda. The Andromeda Galaxy is the largest galaxy of theLocal Group, which also contains the Milky Way, the Triangulum Galaxy, and about 44 other smaller galaxies.
The Andromeda Galaxy is the most massive galaxy in the Local Group as well. Despite earlier findings that suggested that the Milky Way contains more dark matter and could be the most massive in the grouping, the 2006 observations by the Spitzer Space Telescope revealed that M31 contains one trillion (1012) stars:[9] at least twice the number of stars in the Milky Way, which is estimated to be 200–400 billion.[13] The Andromeda Galaxy is estimated to be 1.5×1012 solar masses, while the mass of the Milky Way is estimated to be 8.5×1011 solar masses. In comparison a 2009 study estimated that the Milky Way and M31 are about equal in mass, while a 2006 study put the mass of the Milky Way at ~80% of the mass of the Andromeda Galaxy. The two galaxies are expected to collide in 3.75 billion years, eventually merging to form a giant elliptical galaxy [15] or perhaps a large disk galaxy.
At 3.4, the apparent magnitude of the Andromeda Galaxy is one of the brightest of any Messier objects,[17] making it visible to the naked eye on moonless nights even when viewed from areas with moderate light pollution. Although it appears more than six times as wide as the full Moon when photographed through a larger telescope, only the brighter central region is visible to the naked eye or when viewed using binoculars or a small telescope. Charles Messier catalogued Andromeda as object M31 in 1764 and incorrectly credited Marius as the discoverer, unaware of Al Sufi's earlier work. In 1785, the astronomer William Herschel noted a faint reddish hue in the core region of M31. He believed M31 to be the nearest of all the "great nebulae" and based on the color and magnitude of the nebula, he incorrectly guessed that it was no more than 2,000 times the distance of Sirius. M31 plays an important role in galactic studies, since it is the nearest spiral galaxy (although not the nearest galaxy). In 1943 Walter Baade was the first person to resolve stars in the central region of the Andromeda Galaxy. Based on his observations of this galaxy, he was able to discern two distinct populations of stars based on their metallicity, naming the young, high velocity stars in the disk Type I and the older, red stars in the bulge Type II. This nomenclature was subsequently adopted for stars within the Milky Way, and elsewhere.
Formation and history
According to a team of astronomers reporting in 2010, M31 was formed out of the collision of two smaller galaxies between 5 and 9 billion years ago. A paper published in 2012 has outlined M31's basic history since its birth. According to it, Andromeda was born roughly 10 billion years ago from the merger of many smaller protogalaxies, leading to a galaxy smaller than the one we see today.
The most important event in M31's past history was the merger mentioned above that took place 8 billion years ago. This violent collision formed most of its (metal-rich) galactic halo and extended disk and during that epoch Andromeda's star formation would have been very high, to the point of becoming a luminous infrared galaxy for roughly 100 million years. Messier 31 and the Triangulum Galaxy (Messier 33) had a very close passage 2–4 billion years ago. This event produced high levels of star formation across the Andromeda Galaxy's disk – even some globular clusters – and disturbed M33's outer disk.
While there has been activity during the last 2 billion years, this has been much lower than during the past. During this epoch, star formation throughout M31's disk decreased to the point of nearly shutting down, then increased again relatively recently. There have been interactions with satellite galaxies like Messier 32, Messier 110, or others that have already been absorbed by M31. These interactions have formed structures like Andromeda's Giant Stellar Stream. A merger roughly 100 million years ago is believed to be responsible for a counter-rotating disk of gas found in the center of M31 as well as the presence there of a relatively young (100 million years old) stellar population.
References
Found in HGS Manual on Page 108
Found in HGS Manual on Page 115