Fibonacci: Difference between revisions

From Ascension Glossary
No edit summary
No edit summary
Line 1: Line 1:
If you sum the squares of any series of [[Fibonacci]] numbers, they will equal the last Fibonacci number used in the series times the next Fibonacci number.  This property results in the Fibonacci spiral, based on the following progression and properties of the Fibonacci series.The Fibonacci spiral gets closer and closer to a Golden Spiral as it increases in size because of the ratio of each number in the Fibonacci series to the one before it converges on [[Phi]], 1.618, as the series progresses.
In mathematics, the Fibonacci numbers or Fibonacci sequence are the numbers in the following integer sequence: 1,\;1,\;2,\;3,\;5,\;8,\;13,\;21,\;34,\;55,\;89,\;144,\; \ldots\;




If we sum the squares of any series of [[Fibonacci]] numbers, they will equal the last Fibonacci number used in the series times the next Fibonacci number.  This property results in the Fibonacci spiral, based on the following progression and properties of the Fibonacci series.The Fibonacci spiral gets closer and closer to a Golden Spiral as it increases in size because of the ratio of each number in the Fibonacci series to the one before it converges on [[Phi]], 1.618, as the series progresses.
The [[Fibonacci]] Spiral looses its connection going back to the Zero point or Source, instead the sequence uses the previous number to add into itself (See {Consumptive Modeling]]) to get to the next higher number of the sequence.  progressively moving out of a Krystic or Divine Template as it Expands.


Beginning with Zero, then 1, then goes on with 0+1=1, 1+1=2, 2+1=3, 3+2=5, 5+3=8 and so on. The next number in the Fibonacci is derived from added together the previous number & itself, essentially going back one number each time & adding it to get the next one.
Beginning with Zero, then 1, then goes on with 0+1=1, 1+1=2, 2+1=3, 3+2=5, 5+3=8 and so on. The next number in the Fibonacci is derived from added together the previous number & itself, essentially going back one number each time & adding it to get the next one.

Revision as of 19:21, 24 January 2016

In mathematics, the Fibonacci numbers or Fibonacci sequence are the numbers in the following integer sequence: 1,\;1,\;2,\;3,\;5,\;8,\;13,\;21,\;34,\;55,\;89,\;144,\; \ldots\;


If we sum the squares of any series of Fibonacci numbers, they will equal the last Fibonacci number used in the series times the next Fibonacci number. This property results in the Fibonacci spiral, based on the following progression and properties of the Fibonacci series.The Fibonacci spiral gets closer and closer to a Golden Spiral as it increases in size because of the ratio of each number in the Fibonacci series to the one before it converges on Phi, 1.618, as the series progresses.

The Fibonacci Spiral looses its connection going back to the Zero point or Source, instead the sequence uses the previous number to add into itself (See {Consumptive Modeling]]) to get to the next higher number of the sequence. progressively moving out of a Krystic or Divine Template as it Expands.

Beginning with Zero, then 1, then goes on with 0+1=1, 1+1=2, 2+1=3, 3+2=5, 5+3=8 and so on. The next number in the Fibonacci is derived from added together the previous number & itself, essentially going back one number each time & adding it to get the next one.



References


See Also

Sacred Geometry