Cherenkov Radiation: Difference between revisions

No edit summary
 
(One intermediate revision by the same user not shown)
Line 8: Line 8:
A theory of this effect was later developed in 1937 within the framework of Einstein's special relativity theory by Cherenkov's colleagues Igor Tamm and Ilya Frank, who also shared the 1958 Nobel Prize.
A theory of this effect was later developed in 1937 within the framework of Einstein's special relativity theory by Cherenkov's colleagues Igor Tamm and Ilya Frank, who also shared the 1958 Nobel Prize.


Cherenkov radiation as conical wavefronts had been theoretically predicted by the English polymath Oliver Heaviside in papers published between 1888 and 1889[5] and by Arnold Sommerfeld in 1904, but both had been quickly dismissed following the relativity theory's restriction of superluminal particles until the 1970s. Marie Curie observed a pale blue light in a highly concentrated radium solution in 1910, but did not investigate its source. In 1926, the French radiotherapist Lucien Mallet described the luminous radiation of radium irradiating water having a continuous spectrum.<ref>[https://en.wikipedia.org/wiki/Cherenkov_radiation Cerenkov Radiation wiki]</ref>
Cherenkov radiation as conical wavefronts had been theoretically predicted by the English polymath Oliver Heaviside in papers published between 1888 and 1889[5] and by Arnold Sommerfeld in 1904, but both had been quickly dismissed following the relativity theory's restriction of superluminal particles until the 1970s. Marie Curie observed a pale blue light in a highly concentrated radium solution in 1910, but did not investigate its source. In 1926, the French radiotherapist Lucien Mallet described the luminous radiation of radium irradiating water having a continuous spectrum.<ref>[https://en.wikipedia.org/wiki/Cherenkov_radiation Cherenkov Radiation wiki]</ref>




Line 18: Line 18:


==See Also==
==See Also==
[[Marian Apparition]]


[[Electric Charge]]
[[Electric Charge]]