Messier 94: Difference between revisions

No change in size ,  14 March 2015
No edit summary
Line 5: Line 5:
A 2009 study conducted by an international team of astrophysicists revealed that the outer ring of M94 is not a closed stellar ring, as historically attributed in the literature, but a complex structure of spiral arms when viewed in mid-IR and UV. The study found that the outer disk of this galaxy is active. It contains approximately 23% of the galaxy's total stellar mass and contributes about 10% of the galaxy's new stars. In fact, the star formation rate of the outer disk is approximately two times greater than the inner disk because it is more efficient per unit of stellar mass.<ref>[http://en.wikipedia.org/wiki/Messier_94 Messier 94]</ref>
A 2009 study conducted by an international team of astrophysicists revealed that the outer ring of M94 is not a closed stellar ring, as historically attributed in the literature, but a complex structure of spiral arms when viewed in mid-IR and UV. The study found that the outer disk of this galaxy is active. It contains approximately 23% of the galaxy's total stellar mass and contributes about 10% of the galaxy's new stars. In fact, the star formation rate of the outer disk is approximately two times greater than the inner disk because it is more efficient per unit of stellar mass.<ref>[http://en.wikipedia.org/wiki/Messier_94 Messier 94]</ref>


==Dark Matetr==
==Dark Matter==
 
n 2008 a study was published that appeared to show that M94 had very little or no dark matter present. The study analyzed the rotation curves of the galaxy's stars and the density of hydrogen gas and found that ordinary luminous matter appeared to account for all of the galaxy's mass. This result was unusual and somewhat controversial, as current models don't indicate how a galaxy could form without a dark matter halo or how a galaxy could lose its dark matter.<ref>[http://en.wikipedia.org/wiki/Messier_94 Messier 94]</ref>


In 2008 a study was published that appeared to show that M94 had very little or no dark matter present. The study analyzed the rotation curves of the galaxy's stars and the density of hydrogen gas and found that ordinary luminous matter appeared to account for all of the galaxy's mass. This result was unusual and somewhat controversial, as current models don't indicate how a galaxy could form without a dark matter halo or how a galaxy could lose its dark matter.<ref>[http://en.wikipedia.org/wiki/Messier_94 Messier 94]</ref>


==HGS Session References==  
==HGS Session References==