Jump to content

Messier 45: Difference between revisions

17 bytes removed ,  16 July 2015
No edit summary
Line 15: Line 15:
In Japan, the constellation is mentioned under the name Mutsuraboshi ("six stars") in the 8th century Kojiki and Manyosyu documents. The constellation is also known in Japan as Subaru (“unite”) and is depicted in the logo and name of the Subaru automobile company. The Persian equivalent is Nahid (pronounced "Naheed").
In Japan, the constellation is mentioned under the name Mutsuraboshi ("six stars") in the 8th century Kojiki and Manyosyu documents. The constellation is also known in Japan as Subaru (“unite”) and is depicted in the logo and name of the Subaru automobile company. The Persian equivalent is Nahid (pronounced "Naheed").


The rising of the Pleiades is mentioned in the Ancient Greek text Geoponica.[11] The Greeks oriented the Hecatompedon temple of 550 BC and the Parthenon of 438 BC to their rising.[12] The rising of the Pleiades before dawn (usually at the beginning of June) has long been regarded as the start of the new year in Māori culture, with the star group being known as Matariki. The rising of Matariki is celebrated as a midwinter festival in New Zealand.[13] In Hawaiian culture the cluster is known as the Makali'i and their rising shortly after sunset marks the beginning of Makahiki, a 4 month time of peace in honor of the god Lono.
The rising of the Pleiades is mentioned in the Ancient Greek text Geoponica. The Greeks oriented the Hecatompedon temple of 550 BC and the Parthenon of 438 BC to their rising.The rising of the Pleiades before dawn (usually at the beginning of June) has long been regarded as the start of the new year in Māori culture, with the star group being known as Matariki. The rising of Matariki is celebrated as a midwinter festival in New Zealand. In Hawaiian culture the cluster is known as the Makali'i and their rising shortly after sunset marks the beginning of Makahiki, a 4 month time of peace in honor of the god Lono.
Animation of proper motion in 400,000 years (cross-eyed viewing Stereogram guide cross-eyed.png). Due to technical limitations on thumbnails, you must click through to the actual image to see the animation.
Animation of proper motion in 400,000 years (cross-eyed viewing Stereogram guide cross-eyed.png). Due to technical limitations on thumbnails, you must click through to the actual image to see the animation.


Galileo Galilei was the first astronomer to view the Pleiades through a telescope. He thereby discovered that the cluster contains many stars too dim to be seen with the naked eye. He published his observations, including a sketch of the Pleiades showing 36 stars, in his treatise Sidereus Nuncius in March 1610.
Galileo Galilei was the first astronomer to view the Pleiades through a telescope. He thereby discovered that the cluster contains many stars too dim to be seen with the naked eye. He published his observations, including a sketch of the Pleiades showing 36 stars, in his treatise Sidereus Nuncius in March 1610.
The Pleiades have long been known to be a physically related group of stars rather than any chance alignment. The Reverend John Michell calculated in 1767 that the probability of a chance alignment of so many bright stars was only 1 in 500,000, and so correctly surmised that the Pleiades and many other clusters of stars must be physically related.[14] When studies were first made of the stars' proper motions, it was found that they are all moving in the same direction across the sky, at the same rate, further demonstrating that they were related.
The Pleiades have long been known to be a physically related group of stars rather than any chance alignment. The Reverend John Michell calculated in 1767 that the probability of a chance alignment of so many bright stars was only 1 in 500,000, and so correctly surmised that the Pleiades and many other clusters of stars must be physically related. When studies were first made of the stars' proper motions, it was found that they are all moving in the same direction across the sky, at the same rate, further demonstrating that they were related.


Charles Messier measured the position of the cluster and included it as M45 in his catalogue of comet-like objects, published in 1771. Along with the Orion Nebula and the Praesepe cluster, Messier's inclusion of the Pleiades has been noted as curious, as most of Messier's objects were much fainter and more easily confused with comets—something that seems scarcely possible for the Pleiades. One possibility is that Messier simply wanted to have a larger catalogue than his scientific rival Lacaille, whose 1755 catalogue contained 42 objects, and so he added some bright, well-known objects to boost his list.
Charles Messier measured the position of the cluster and included it as M45 in his catalogue of comet-like objects, published in 1771. Along with the Orion Nebula and the Praesepe cluster, Messier's inclusion of the Pleiades has been noted as curious, as most of Messier's objects were much fainter and more easily confused with comets—something that seems scarcely possible for the Pleiades. One possibility is that Messier simply wanted to have a larger catalogue than his scientific rival Lacaille, whose 1755 catalogue contained 42 objects, and so he added some bright, well-known objects to boost his list.