Jump to content

Uncertainty Principle: Difference between revisions

no edit summary
No edit summary
No edit summary
Line 3: Line 3:
In [[Quantum Mechanics]], the [[Uncertainty Principle]], also known as Heisenberg's uncertainty principle, the more precisely the position is determined, the less precisely the momentum is known in this instant, and vice versa. This is a succinct statement of the "uncertainty relation" between the position and the momentum (mass times velocity) of a subatomic particle, such as an electron. This relation has profound implications for such fundamental notions as causality and the determination of the future behavior of an atomic particle. <ref>[https://en.wikipedia.org/wiki/Uncertainty_principle Uncertainty Principle]</ref>
In [[Quantum Mechanics]], the [[Uncertainty Principle]], also known as Heisenberg's uncertainty principle, the more precisely the position is determined, the less precisely the momentum is known in this instant, and vice versa. This is a succinct statement of the "uncertainty relation" between the position and the momentum (mass times velocity) of a subatomic particle, such as an electron. This relation has profound implications for such fundamental notions as causality and the determination of the future behavior of an atomic particle. <ref>[https://en.wikipedia.org/wiki/Uncertainty_principle Uncertainty Principle]</ref>


Essentially, the Heisenberg Uncertainty Principle is relative to the act of observation that collapses a wave potentiality that makes a situation, event or object become physical. When we observe [[EMF]] wave-forms we change the physical environment and how that is expressed in tangible ways.  
'''Essentially, the Heisenberg Uncertainty Principle is relative to the act of observation that collapses a wave potentiality that makes a situation, event or object become physical. When we observe [[EMF]] wave-forms we change the physical environment and how that is expressed in tangible ways.'''


Important steps on the way to understanding the uncertainty principle are wave-particle duality and the DeBroglie hypothesis.(Suggested by De Broglie in about 1923, the path to the wavelength expression for a particle is by analogy to the momentum of a photon.) As you proceed downward in size to atomic dimensions, it is no longer valid to consider a particle like a hard sphere, '''because the smaller the dimension, the more wave-like it becomes.''' It no longer makes sense to say that you have precisely determined both the position and momentum of such a particle. When you say that the electron acts as a wave, then the wave is the quantum mechanical wavefunction and it is therefore related to the probability of finding the electron at any point in space. A perfect sinewave for the electron wave spreads that probability throughout all of space, and the "position" of the electron is completely uncertain.
Important steps on the way to understanding the uncertainty principle are wave-particle duality and the DeBroglie hypothesis.(Suggested by De Broglie in about 1923, the path to the wavelength expression for a particle is by analogy to the momentum of a photon.) As you proceed downward in size to atomic dimensions, it is no longer valid to consider a particle like a hard sphere, '''because the smaller the dimension, the more wave-like it becomes.''' It no longer makes sense to say that you have precisely determined both the position and momentum of such a particle. When you say that the electron acts as a wave, then the wave is the quantum mechanical wavefunction and it is therefore related to the probability of finding the electron at any point in space. A perfect sinewave for the electron wave spreads that probability throughout all of space, and the "position" of the electron is completely uncertain.