36,780
edits
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Radio Waves]] are a type of electromagnetic radiation with wavelengths in the electromagnetic spectrum longer than infrared light. Radio waves have frequencies from 300 GHz to as low as 3 kHz, and corresponding wavelengths ranging from 1 millimeter (0.039 in) to 100 kilometers (62 mi). Like all other electromagnetic waves, they travel at the speed of light. Naturally occurring radio waves are made by lightning, or by astronomical objects. Artificially generated radio waves are used for fixed and mobile radio communication, broadcasting, radar and other navigation systems, communications satellites, computer networks and innumerable other applications. Radio waves are generated by radio transmitters and received by radio receivers. Different frequencies of radio waves have different propagation characteristics in the Earth's atmosphere; long waves can diffract around obstacles like mountains and follow the contour of the earth (ground waves), shorter waves can reflect off the ionosphere and return to earth beyond the horizon (skywaves), while much shorter wavelengths bend or diffract very little and travel on a line of sight, so their propagation distances are limited to the visual horizon.<ref>[https://en.wikipedia.org/wiki/Radio_wave Radio Wave]</ref> | [[Radio Waves]] are a type of electromagnetic radiation with wavelengths in the electromagnetic spectrum longer than infrared light. Radio waves have frequencies from 300 GHz to as low as 3 kHz, and corresponding wavelengths ranging from 1 millimeter (0.039 in) to 100 kilometers (62 mi). Like all other electromagnetic waves, they travel at the speed of light. Naturally occurring radio waves are made by lightning, or by astronomical objects. Artificially generated radio waves are used for fixed and mobile radio communication, broadcasting, radar and other navigation systems, communications satellites, computer networks and innumerable other applications. Radio waves are generated by radio transmitters and received by radio receivers. Different frequencies of radio waves have different propagation characteristics in the Earth's atmosphere; long waves can diffract around obstacles like mountains and follow the contour of the earth (ground waves), shorter waves can reflect off the ionosphere and return to earth beyond the horizon (skywaves), while much shorter wavelengths bend or diffract very little and travel on a line of sight, so their propagation distances are limited to the visual horizon.<ref>[https://en.wikipedia.org/wiki/Radio_wave Radio Wave]</ref> | ||
The study of electromagnetic phenomena such as reflection, refraction, polarization, diffraction, and absorption is of critical importance in the study of how radio waves move in free space and over the surface of the Earth. Different frequencies experience different combinations of these phenomena in the Earth's atmosphere, making certain radio bands more useful for specific purposes than others. | |||
In order to receive radio signals, for instance from AM/FM radio stations, a radio antenna must be used. However, since the antenna will pick up thousands of radio signals at a time, a radio tuner is necessary to tune in a particular signal. This is typically done via a resonator (in its simplest form, a circuit with a capacitor, inductor, or crystal oscillator, but many modern radios use Phase Locked Loop systems). The resonator is configured to resonate at a particular frequency, allowing the tuner to amplify sine waves at that radio frequency and ignore other sine waves. Usually, either the inductor or the capacitor of the resonator is adjustable, allowing the user to change the frequency at which it resonates. | |||
The human body is a crystal oscillator and frequency resonator. | |||