36,800
edits
(Created page with "thumb|Two opposing waves combine to form a standing wave. In physics, a Standing Wave – also known as a stationary wave – is a wav...") |
No edit summary |
||
Line 4: | Line 4: | ||
==Mathematical description== | ==Mathematical description== | ||
In one dimension, two waves with the same frequency, wavelength and amplitude traveling in opposite directions will interfere and produce a standing wave or stationary wave. For example: a wave traveling to the right along a taut string and hitting the end will reflect back in the other direction along the string, and the two waves will superpose to produce a standing wave. The reflective wave has to have the same amplitude and frequency as the incoming wave. | In one dimension, two waves with the same frequency, wavelength and amplitude traveling in opposite directions will interfere and produce a standing wave or stationary wave. For example: a wave traveling to the right along a taut string and hitting the end will reflect back in the other direction along the string, and the two waves will superpose to produce a standing wave. The reflective wave has to have the same amplitude and frequency as the incoming wave. | ||
If the string is held at both ends, forcing zero movement at the ends, the ends become zeroes or nodes of the wave. The length of the string then becomes a measure of which waves the string will entertain: the longest wavelength is called the fundamental. Half a wavelength of the fundamental fits on the string. Shorter wavelengths also can be supported as long as multiples of half a wavelength fit on the string. The frequencies of these waves all are multiples of the fundamental, and are called harmonics or overtones. For example, a guitar player can select an overtone by putting a finger on a string to force a node at the proper position between the ends of the string, suppressing all harmonics that do not share this node. | If the string is held at both ends, forcing zero movement at the ends, the ends become zeroes or nodes of the wave. The length of the string then becomes a measure of which waves the string will entertain: the longest wavelength is called the fundamental. Half a wavelength of the fundamental fits on the string. Shorter wavelengths also can be supported as long as multiples of half a wavelength fit on the string. The frequencies of these waves all are multiples of the fundamental, and are called harmonics or overtones. For example, a guitar player can select an overtone by putting a finger on a string to force a node at the proper position between the ends of the string, suppressing all harmonics that do not share this node.<ref>[https://en.wikipedia.org/wiki/Standing_wave Standing Wave]</ref> | ||
==References== | ==References== | ||
Line 11: | Line 11: | ||
==See Also== | ==See Also== | ||
[[Scalar Wave]] | |||
[[DNA Signals]] | [[DNA Signals]] |