Wernicke's Area

Revision as of 21:29, 19 June 2024 by Lisa (talk | contribs)

[[File:Brain - Broca's and Wernicke's area Diagram.svg|thumb|Diagram of Broca's and Wernicke's area of Human Brain.[1]

Wernicke's Area, also called Wernicke's speech area, is one of the two parts of the cerebral cortex that are linked to speech, the other being Broca's Area. It is involved in the comprehension of written and spoken language, in contrast to Broca's area, which is primarily involved in the production of language. It is traditionally thought to reside in Brodmann area 22, which is located in the superior temporal gyrus in the dominant cerebral hemisphere, which is the left hemisphere in about 95% of right-handed individuals and 70% of left-handed individuals.

Damage caused to Wernicke's area results in receptive, fluent aphasia. This means that the person with aphasia will be able to fluently connect words, but the phrases will lack meaning. This is unlike non-fluent aphasia, in which the person will use meaningful words, but in a non-fluent, telegraphic manner.

Emerging research on the developmental trajectory of Wernicke's area highlights its evolving role in language acquisition and processing during childhood. This includes studies on the maturation of neural pathways associated with this region, which contribute to the progressive complexity of language comprehension and production abilities in developing individuals.

Structure

Wernicke's area, more precisely defined, spans the posterior part of the superior temporal gyrus (STG) and extends to involve adjacent areas like the angular gyrus and parts of the parietal lobe reflecting a more intricate neuroanatomical network than previously understood. This area shows considerable variability in its exact location and extent among individuals, challenging the traditional view of a uniformly located language center.

However, there is an absence of consistent definitions as to the location. Some identify it with the unimodal auditory association in the superior temporal gyrus anterior to the primary auditory cortex (the anterior part of BA 22). This is the site most consistently implicated in auditory word recognition by functional brain imaging experiments. Others include also adjacent parts of the heteromodal cortex in BA 39 and BA40 in the parietal lobe. Despite the overwhelming notion of a specifically defined "Wernicke's Area", the most careful current research suggests that it is not a unified concept.

While previously thought to connect Wernicke's Area and Broca's Area, new research demonstrates that the arcuate fasciculus instead connects to posterior receptive areas with premotor/motor areas, and not to Broca's area. Consistent with the word recognition site identified in brain imaging, the uncinate fasciculus connects anterior superior temporal regions with Broca's area.

Clinical significance

Wernicke's area is named after Carl Wernicke, a German neurologist and psychiatrist who, in 1874, hypothesized a link between the left posterior section of the superior temporal gyrus and the reflexive mimicking of words and their syllables that associated the sensory and motor images of spoken words. He did this on the basis of the location of brain injuries that caused aphasia. Receptive aphasia in which such abilities are preserved is also known as Wernicke's aphasia. In this condition there is a major impairment of language comprehension, while speech retains a natural-sounding rhythm and a relatively normal syntax. Language as a result is largely meaningless (a condition sometimes called fluent or jargon aphasia).

Wernicke's area receives information from the auditory cortex, and functions to assign word meanings. This is why damage to this area results in meaningless speech, often with paraphasic errors and newly created words or expressions. Paraphasia can involve substituting one word for another, known as semantic paraphasia, or substituting one sound or syllable for another, defined as phonemic paraphasia. This speech is often referred to as "word salad", as speech sounds fluent but does not have sensible meaning. Normal sentence structure and prosody are preserved, with normal intonation, inflection, rate, and rhythm. This differs from Broca's aphasia, which is characterized by nonfluency. Patients are typically not aware that their speech is impaired in this way, as they have altered comprehension of their speech. Written language, reading, and repetition are affected as well.

Damage to the posterior temporal lobe of the dominant hemisphere is the cause of Wernicke's aphasia. The etiology of this damage can vary greatly, with the most common cause being a cerebrovascular event such as an ischemic stroke. Ischemic stroke is the result of a thrombus occluding a blood vessel, restricting blood supply to a particular area of the brain. Other causes of focal damage potentially leading to Wernicke's aphasia include head trauma, infections affecting the central nervous system, neurodegenerative disease, and neoplasms. [2]

References

See Also

FFR during Sleep State and Brain Wave Sovereignty

Prefrontal Cortex

Hippocampus

Emotional Self-Regulation

Emotional Competence

Emotional Healing

Impulse Control